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A SYNTHESIS THEORY FOR MU LT IPLE-LOO P OSC 1LLA TIUG ADAPTIVE SYSTE ;MS

I

Isaac Horowitz ’ and Aharon Shapiro t

AB STRACT 
-

The multiple-loop self—oscillating adaptive (SOAL) system

is presented as a natural , logical means of overcoming a serious

limitation of the single-loop self-oscillating system (SOAS).

Both structures have the property of zero sensitivity to plant

high-frequency gain uncertainty p kmax/kmjn , the factor

which is generally responsible for large ‘cost of feedback ’. It

is however necessary to design these systems such that the response

is essentially quasilinear to the desired cl~ r3 of command and

disturbance signals. In the SOAS , p rear as a significant

factor in the quasilinear requirements WhIcii may , depending on

the numbers involved , completely vitiate its banishment as an

uncertainty factor. The development of a quantitative design

theory for the SOAS pinpoints the two-loop SOAL extension needed
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to overcome this SOAS limitation, and the development of a

similar SOAL quantitat ive design theory . In the latter, p
the

disappears from both,~adaptive and quasilinear conditions ,

but reappears as a factor in the rate of adaptation of the

system. It may be banished from here too, by means of a

three-loop self-oscillating system (SOANL), for which

the SOAL design theory is applicable with minor extensions.
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A SYNTHESIS- THEORY FOR ~RJLTIPLE-LOOP OSCILLATING

ADAPTIVE SYSTEMS 
V

I. INTRODUCTION

It is well known that high frequency dither can -linear-

ize the response of a certain class of nonlinear elements to

slower and smaller amplitude signals [1-3]. This phenome-

non is explicable by multiple-input describing function

theory [L~_7], and has recently received more abstract and

rigorous treatment [8]. The adaptive property of such dith-

er was later recognized [9, 10 and especially 11]. Struct-

ures similar to dithered systems were among those promoted

in the USAF sponsored competition for adaptive flight con-

trol systems [12, 13]. Some versions were among the suc-

cessful ones , used for example in the X-l5, X-20 involving

fantastic parameter uncertainty factors of more than one

thousand [11I.- 16]. These systems contain strongly nonlinear

elements but their system properties have significant linear

aspects. Thus , aside from their inherent value, they are
the linear and nonlinear

of interest as a transition between~adaptation philoscphics .

A variety of dithered feedback systems exist. In most ,

the amplitude of the dither is used as a parameter identi-

fier , but in some the phase is also used. Single and two-
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loop, self-oscillating and externally excited systems have

been described [17-22]. In all , both the quasilinear and

the adaptive aspects are easential features which must be

properly designed into the system. The quasilinear aspect

has received thorough quantitative treatment [21-i ], but the

adaptive aspect to a much lesser extent. Since parameter

uncertainty is the motivation for these systems , surely the

actual extent of uncertainty and the desired system response

tolerances, ought to appear as significant design parame-

ters. It is reasonable to expect that an optimum design to

handle an uncertainty factor of say 1000 , should be signi-

ficantly different from one for an uncertainty factor of

100. But this is not so in most of the literature . There

have so far appeared quantitative design theories only for

the single-loop self-oscillating (SOAS ) and the single—loop

externally excited (EEAS) adaptive systems [25, 26]. This

paper presents such a design theory for two versions of the

two—loop self—oscillating system (SOAL and SOANL). The

SOAL structure used here is not new , although it was inde-

pendently derived in a straightforward logical manner (as

will be seen), in the process of trying to overcome SOAS

limitations. The quantitative design theory is new and 
V

reveals the the superiority of the SOAL. structure over oth-

er two-loop versions . The quasilinear feastures common to

all dithered systems are first reviewed.

V 
Review of Quasilincar Theory [21-i ]

Let the input to the nonlinearity N (Fig. 1) be

V

~ 

• ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~ ~~~~~~~~~~~~~~~~~~~~ --V
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x A sin ~0t + xf(t) ~ x0(t) + xf(t) (la,b)

Let O) f be the bandwidth of Xf(jW) %xf (t ) ] , s jw and

a, ~ specific suitable numbers (a = 3 will be used V

in subsequent numerical examples). For a certain class of

nonlinearities , ~j f 
V •

suplxf(t)J ~ 
~~ 

—a-- 
• (2a,b)

then y, the output of N may be written with good accuracy

(depending on the values of a , ~ [21-i])

y N0A sin w0t + Nfxf(t); N0 ~ , Nf 
N0 (3a-c)

with M a real parameter of N. The ideal relay with +B

saturating levels will be always used henceforth for illus-

trative purposes , for which M = . Thus , N presents

the gain N0 to the faster and larger oscillating component

and Nf N0/2 to the slower and smaller forced corn—

ponent X
f 

of (la ,b). Accordingly in Fig. 1 the forced

component system response functions to command and disturb-

ance inputs are
A Cf Lf A C  1Tf(s) 

-

~~~

- 

~~1+Lf 
, Td ~i5~ l +L f 

(‘a,b,c)

T 
-Lf

dz~~~~~~~ l + L f~~ 
V

with forced and oscillating component loop transfer func-..

tions

Lf G1G 2 N f P = G1G2NfKPh , L0 G1G2N0
}~ 2L~- 

~
N (5a ,b ,c)

N - o 2 B
I 

— 
2 

— itA 

~~~~~~~~~~~~~ •~~~~~V -- ~~ V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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In the above P = K 
~h 

is the constrained plant and it

is assumed in the meantime that the only uncertainty is in

the high frequency plant gain facVtor K , defined by

A
u r n  P(s) 1 (6)K

where p is the excess of plant poles over zeros.

II. REVIEW OF SOAS ADAPTIVE THEORY

There is a logical and natural transition from the

SOAS to the two-loop SOAL , which renders the latter theory

quite transparent once the former is well understood . First ,

note that if the excess of poles over zeros of L0 ( s)  of

(5b) is ~~~ V 3 , then from describing function theory and the

infinite gain of the ideal relay (or large enough ga in for

other nonlinear element), there is a limit cycle at 
~~ ‘

defined by

Arg L0(jw0) -it with 1L0(jw 0)I ¶A~~
’
lC2 KPh(jw o)I= 1

(7a, b)

Since all elements of (7b) except K , A are fixed , K/A

must be a constant , giving zero sensitivity of Lf(Jw) = L0/2

to K uncertainty . Inc iden ta l ly ,  the rigorous requirements

for excellent  accuracy of the descr ibing f u nc t i on [2 7 ]  arc

easily achieved  in SOAS ari d SOAI1 desi gn.  Second , in  any

practical .  system there m u s t  he a hound in on the  tolerable

amplitude of the limit cycle at the sys tem ou tpu t , i. e. in

Fig. 1

L _  _ _ _ _ _ _ _ _ _ _
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sup ~~ ~~ K 
~h 

(j c~0) I = ~~ 1G 2 K Ph(jw )l ~ m (8)

K

Third , the quasilinearity conditions (2a ,b) compel

V specification of the extreme command and disturbance signals

for which quasilinearity is to be valid . It is found [25]

that these are the inputs giving maximum forced compon ent

plant output IZe(jw o)l at in Fig. 1, and denoted by

• ~~~ 
Re Tf of (14) for the extreme command input , and

Zed = _D
e Tdz of (L i ) for the extreme disturbance input.

The corresponding extreme input to N is denoted by Xei

with Zei (s) ~~ 02 KPh Xei (5) in Fig. 1. • 

If d(t),

r(t) never or rarely occur simultaneously then the larger

-it each oJ must be used. If the two extremes do occur

• together, then their sum must be used. Fourth , a good

optimization criterion is the minimization of of (7),

because the bandwidth of Lf is thereby minimized [281.

In the SOAS , conditions (2a,8) usually determine

~°~o~min , as follows. Write Ze(j(A)) = 
~~~ 

G2KPhXe(j(A)) =

irA - 
02 Kmin E’h Xe(jW) because A/K is invariant , as

mm

previously noted following (7). Use the above to eliminate

BG2Ph in (8), giving

X 2 K A
1A ~ ~

i
~
o
~ 1 ~ m K .  IZ~

(j
~0) I 1i e

(
~~ o~ t (9)

mm mm
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The final important constraint is (2a) in which the worst

case is when x x and A A . . It is shown in [25]f e nun
that

that the best~ can be done results in (2a) being equivalent

to

x V

~~~~~~~~~~ 
‘

~~~~~~~~~~~‘ 
(10) - •

• mm

The importance of conditions (9, 10) is illustrated by the

following desing example.

Design Example. P = , K € [1,100] . The extreme command

input Re
(s)  = ‘~~

-
~~
- and the disturbancesare thought to be

negligibly small. The maximum tolerable oscillation V

amplitude in = 1 The desired system response function is

Tf(s) = 2
0
~
01 ~~~~~ , where ~(s) contains the far-off -

s +O.ls+0.0l 
V

poles and zeros which may be added , if worthwhile .

Design. In the above 2 1<Inax~
hfh Kmjn 200 ,

Ze Zre = Re Tf and the resulting YiIZer (j1-0)I is

sketched in Fig. 2 for ~(s) 1’ as is 3/ c t  n (a = 3)

of (10), as if testing any w if it may be used for

Conditions (9,10) dictate that (c
~
io)mjn is at the inter- 

-

action of the two curves , with value 20 rps . Suppose

~(s) = 2 is acceptable. The new aitZ~
(
~

t&I)I gives
(s+l) V

1 -1 . 5  . Clearly , it is desirable to add as many0mi n

far-off poles as tolerable. Condition (2b) is then satisfied

_ _- -  
VV V~~~ V V~~
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V 
• by a large marg in. V

2K
It is seen that = is decisively important

max

in determining (w ) . . It is interesting that theo m mn K
uncertainty in K expressed by ~~~

-
~~

-
~~~~~

- , which was banished
mm

from Lf , returns as a constraint which is very important

in determining (w o)min and with it, the bandwidth of Lf

If is large enough , the resulting Lf bandwidth

may be larger than that required by a linear time—invariant

feedback design satisfying the same quantitative specifica-

tions [28].

Limitations due to Disturbances

Disturbances impose a -serious limitation on the SOAS .

This is seen by asking:- Given - determined by Zer as

in the above example , for what class of disturbances D

in Fig. 1, is quasilinearity maintained? Consider then

Ze
(
~

(A)o
) Zde(lW o

) 
~~~~~~~~~~~ 

D~ (jw0) = De(jüi~
)
~ 

because from

(5b, 7b) Lf(jw ) = —0 .5 . In the limiting case (from 9, 10)

Yl IZde(JW o)I = y1ID~(~ w0
)~~=l/3w0 , which determines the

tolerable D class. Thus in the above example if

D = k/s , then set 200 k /ü  = 1/3 w , g i v i n g
e max 0 0

k = 1/600 — a very small tolerable step disturbance —max

the assumed negligible disturbance may not be ignorable

after all. If D = -- ---
~~
---

~~
- with u , then

C (s+a) 0
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k
200 ~~~~~~~ 

~~~~~~
— gives k -

~
--o-

~ 
- Any larger disturbances

0

violate quasilinearity condition and the response to them

becomes very sensitive to the relative phases of the

sin~ soii  and the disturbance input .

In the above , the problem of design for specific

disturbance attenuation was not even considered. Suppose

there are significant disturbances ~~‘ich must be attenuated.

V Whatever disturbance attenuation design philosophy [28] is

used , it results in some extreme plant output Zde for the

extreme disturbance input De - As in the above , it is

necessary that y
~ 

(D (jw 0)l ~ l/ctw - L De(S) k/s ,

there is no solution if y1k > 1/ct . Howr er if the excess

of poles over zeros of De(s) 
) 2 , then there is always a

solution , but (Wo
)mjn may then be exceedingly large. Thus ,

in the above example , De = J/s2 gives y1J/w~ 1/3u~ ,

so (W o)min = 6000 J . A linear time-invariant design

might be far better in terms of loop-baridwith .

Completion of Design Example

If disturbance attenuation is of no concern , then the

design is basically complete , once has been chosen [25].

For w < 
~~~ ~ 1L0( iw ) I  ShoUld be chosen >1 of course ,

but not necessarily very large , because Lf as such is not

needed for disturbance attenuation or sensitivity reduction.

It is desirable to have large id Ar’g L0 (j
~~

) / d w l at 
~~

so that the value of is insensitive to changes in plant
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dynamics. Such an Arg L0(jw) is associated with fast

decrease of fL0(jii )~ near , which in itself is also

desirable. If disturbance attenuation is of concern then

Lf 0.5 L0 must be shaped to obtain the desired

disturbance attenuation , which must , as previously shown ,

be compatible with the chosen . In fact, from the

previous discussion , Wc, due to quasiliriearity
mm

constraints is very likely much larger than that needed for

disturbance attenuation alone. As an example of design for

(compatible) disturbance attenuation suppose one wants it

(i.e , ITo(jw)J of 4b) to be 
~ 

Bd(w) , a straight line

on a Bode plot (db vs log w) , with Bd(l) —Sdb , V

Bd(~
l) —30db . It is given that this bound applies for

w < 1.2 - For all other L it is required that

L
~ 2.3db . See [28 , 29 Sec. 10 . 15] how such bounds

f

may arise. In any case, no matter what design approach is

used , disturbance attenuation is a matter of small enough

V ITd(iw)l vs w over a sufficiently large ~ range.

Diff erent techniques only give different Bd
(w) for Td(ju).

Since Td 1+L , the Bd(cU ) generate bounds B(w) on
f

Lf(jw) , shown in Fig. 3, which together with the previous

constraint of C% m m  = 14.5 and Lf
(~ C~0) = -0.5 (point

A in Fig. 3), complete the specifications on

In this case , Lf(jw) is easily shape ’ to satisfy the

B(w) and 14.5, as shown in Fig. 3, wi t h

V (l.28)l0 6(s~ +3O3+225)
Lf(s) = _ _ _ _ _ _ _ _ _ _ V V V

~~~~~~~~~~~~~~

_ V _ V  
-

s(s2+6.1-i14s+21.2)(s2+lSs+225)

I

V

~

•. _ _ _ _ _ _ _ _
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The prefilter G3 is obtained from

Tç(s)
0 = = 1

V ~ [Lf/(1+Lf)] (1+lOs+100s 2)(i+s)2

z
Constraint (10) determines G2(s) by use of X = 

e
V e N G X Pf 2  h

Nf = giving ~.BG2(jw)I 
~ 

2 K • n (p (j~,j) 
for w 

~

with IZe t the larger of IZer~ ~ I ~~~ ~ assuming

simultaneous occurrence of extreme r(t) and d(t) is

very rare. In this case, it is easily found that

IZ er
(j W ) I > 1Z~~

(
~ W )1 for 1t~ 

~ ~o 
so Z Re Tf is

V 

used. A satisfactory choice is

- 
76ir(l+lOs)(s2+3.22s+21.2)BG2 -

(1+l0s+lOOs 2)(l+s)2

is found from Lf ~~~~~ C1G2K P~1 . B can be chosen for convenie

in hardwareimplementatiofl. The value 8= 16-ir was here chosen.

Amin = 0.5 is
’ known from knowledge of Lf , 8G2, C~~, KPh

Motivation for the Two-Loop SOAL

It is seen from the above that the presence of

K /K - in y of (9) is a very serious impediment inmax mm 1

SQAS design , leading to (w
o
)min unneces sarily large for

the adaptive and disturbance attenuation needs of the

system. Suppose Kmax/Kmin could be eliminated with

2/rn used instead of in (9). Then , in the above

example in Fig. 2, the intersection of Y2 IZrc(~~~
)I with

1/3m gives 
~~o~min 1.3 , in place of tl.Srps , an

V - - V~~~~• ’ • • ~~~~~~~~~~~~ .~~~~ -V -- ~~~~~~~~~ ~~~~~~ V V  ~~~~~~~~~~~~~~~~~~~~~~
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improvement of 1.79 octaves. Note that constraint (ib) is

easily satisfied even at this value of . But in

general there is some possibility that (lb) becomes

significant, in the SOAL design. For De = k/s or

etc., tolerable kmax is exactly K = 100
mm

times the previous values. Thus , elimination of Kmax/Kniin

in is highly desirable and the SOAL (Fig. ‘la) is a

suitable structure for this purpose.

III. SOAL ADAPTIVE THEORY

In order to eliminate K /K . from y in (9),max iiu.n 1

it is necessary to eliminate Km x  from (8) and Kmin
from Ze in the discussion leading to (9). Both are due

to K/A being invariant in (7b), which in turn gives the

system zero sensitivity to uncertai~ity in K . Henc e ,

elimination with retention of zero K-sensitivity

is possible, if instead of K/A , BK in (7b) is made -

invariant. But whereas A automatically tracks K such

that in steady-state K/A is invariant , B can be made

to do so only by means of a secondary loop. The function

of the latter is to track A and adjust B , to force A

to be constant in the steady-state . Since (7a) fixes

and (7b) compels BK/A to be fixed (inasmuch as

0102 ~~~~~~~ 
is fix ed)~ fixed A compels BK to be invariant.

This reasinirig leads directly to the self-oscillating

adaptive loop (SOAL) structure of Fig. 4a.

_ _  
- - V ~~~V • ~~ V~V~~~~
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SOAL Structure. --In Fig. ‘ia , a peak detector Am~ 
i.s used to

measure the di f f e rence between the maximum and minimum

values of x =A sin w0t + xf(t). This gives a fast and

accurate measurement of 2A , because (recall 2a, b) the

system is designed so that over the range of command and

disturbance inputs , Ix f (t)I is both small and slow

relative to A and . (See later for comparison with

other methods). The measured A is compared with them

chosen reference value Ar and the difference Ae
(t) 

~
processed by ~(s) , changes B so that in the steady~-

state , Ae is very small or zero. The dynamics of the

secondary loop are next considered.

Dynamics of Secondary Loop

The technique [293 of the ‘Fundamental Feedback Equation’

is used to derive the dynamics . In a linear time invariant

- system , letJ be any variable chosen as an independent

system input, and ~~
‘the output variable of interest. Let

(s) be the transfer function of any system element such

that ,~~(s) f(s) i(s) , where~~& and are any two

- system variable so relate d to . If the element is

thus uni quely identified by the variables .4 and 1C ,
then the relation between and , has the form

A 
_ _ _ _ _  ~~

(s)t
~ i(s)t0~

(s)
T = = t .(s) + . ( 1 1)

01 1— 
~~

s)t
~ 5
(s)

The important feature of this ‘fundamental feedback

~

• __ _ _ _ _ _ _ _
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equation ’ for reference a(s) , is that  l0~ , t
~ 1 ,

t
~5
(s) are completely independent of a(s) and they a-re

calculated quite easily , as will he seen. Eq. (11) is there-

fore very useful if one wishes to focus attention on the

relation between T~~ and i2~. it is also very useful in

analysis [29] enabling a complex problem to he broken into

V 
- four simpler ones—so used here.

Let the independent input ~ be a change in A and

the output ~~ be the change in B . Let /~,(s) ~, (s)

so ~ (s) and (s) are as shown in 1g. 4a. The four

transmissions t1~~(s) are obtained as follows [29]. Cut

the system at points a, a’ with Fig. 1-lb replacing the top

(secondary loop) part of Fig. 14a. The functions t0~ tel are the

transmissions from j  = AA to the variables & =AB
= a . The functions t0~ , ~~~ are the transmissions

from 4 = a’ regarded as an independent input ~ to the

variables ô , a . One must calculate four

transfer functions instead of only one - but the cuts can

make the latter four much easier to find - providing a wise

choice of~~~ has been made. The system input r(t) in

Fig. ‘lb need not be zero so long as it may be assumed it

does not affect the limit cycle.

Accordingly , in Fig. ‘lb V

U
= 0 ; t~~ = —A

~~
(s) being

the transfer function of a peak -- to - peak detector , which

-~~~ ~~~~~~~~~~~~~ —‘ —V-
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _
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requires a half - period , giving

-.5sTt
~1~~~~

e , T = 2 i r /~ 0 ; t
05 =~~~- 

~~~~~~~~~~~~~~

The function ~~~ = 4 consists of two parts.

Obviously one part is _A
me(s) . The other is the effect

of AB on the limit cycle amplitude at x , precisely as

in the SOAS . The steady-state value is obtained from (7b)

giving 
~ IG 1G2KPh(jwO)I= A/B . The dynamics of the

change AA due to L\B was found experimentally to be
Lf/Pwell ap~roxiinated

’ by 1+(LfT~) 
with between 2 and 3

for different conditions. The worst case p 3 is used V

here, giving the ‘secondary loop transmission ’

L5(s) ~~~ = 
~~ tGlG2KPh(jw )1 e~~

S5T (12)

The stability and speed of this B adjusting ioop is

primarily determined by L5(s) , whose maximum ‘crossover
‘1-frequency ’ 

~c 
(where IL5(i~~)I 1 ) is <

approximately , because e~~ 
5sT contributes _600 phase

at 4 - and allowing at least 30° phase marg in , thex~e is

left -90° needed for IdL5(jw)/dw J~ -6db per octave

at . It is interesting to see the reappearance of

the K uncertainty in ‘is after it was banished from

the primary loop and quasilinearity conditions . The K

uncertainty must be considered in the shaping of L5

Since 
~e max W / 3  at K Km~x ~ 

“3e mm at K =



-

~~~~~~~~~

V - 

V

can be quite small with resulting much slower adjustment of

B to K changes near K K . . The function ~ (s) ismm
available for shaping of L5(s)

From the above it is easy to find the effect of changes

in K on B . The independent input is now a change in

K . Using the same ,~~ ‘(s) the result is

= - 
B 

~~~~ 
; L5 of Eq. (12).

SOAL Design Equations

These follow easily froii’, those of the SOAS . In (8) BK

is constant, so Kmax is replaced by K . Constraint (9)

becomes

X (jW ) -

e 
A I ~ ~~~ 

J Z (j tü ) J  ( 13)

because A is constant. For the same reason (10) becomes

I ~~ , V W W~ . (114)

The above is illustrated by a numeri cal example.

— - --~~~~~ -- V ’
_
~~-——-- .-
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SOAL Design Example.

The plant and specifications are the same as in the

SOAS example , except that m there of 1 is decreased here

to .01. In this way ,

V m
~:~ 

tZe(jWo)I (SoAL) = 
mold K .  IZe(jW o)I (SOAS )

giving again w0 mm = 14.5 [If in .01 is used in the

SOAS , the resulting w0 mm = l’4 rps, and it is possible

that over part of this range’ IZde(~
W)I > IZre(jW)I , so

even larger w0 mm would be necessary]. The bounds on

Lf(jw) to obtain the specified disturbance attenuation

are the same as in the SOAS so precisely the same lVI
f

(S)  , 
V

G3(s) , BG2(s) , 01(s) result. In the SOAS, Amin = .5~r

here fixed. If B = 16ir is used at K . V l  
, thenmm

B = .16w at K = 100 . Only ~~s) remain to be chosen.max
Choice of ~~s) = 0.14/s gives very simple secondary loop

dynamics , because at K = 100 , A = .5 , B 1671

~~
- e~~

7
~ (ignoring (Lf/3)/[1l~(Lf/3)] which is

close to 1 over t0 ,.1-l] , .14rps being the crossover

frequency We of L5(jw) . The time delay e gives

16° phase lag at W
~ . If this too is ignored ,

. 1 4

~~~VV
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Design Verification. The system was simulated on the

CDC 6 1400 at University of Colorado, using 1’IIMIC. Results

are shown in Figs. Sa-c for abrupt gain changes in K . In

(a), the time required for B to reach 95% of its final

value is 9.8 seconds. If K = 100 is used in the previous

simple first order approximat ion of L5 then three time

constants plus a half-period predict 8.2 seconds , whereas

use of K = 50 predicts 15.7 sec. It is seen that the

speed of adjustment significantly decreases , as predicted,

at the smaller K values. The invariance of the system

step response for various K is seen in Figs. 6a-b; also

that (2a) is very well satisfied.

Comparison with other Two-Loop Self-Oscillating Adaptive

Systems.

One significant distinction of the SOAL is its retention

of the nonlinear element N of the SOAS , with use of the

second loop to modif y its parameter. In some other two-loop

systems [13, 18, 19, 213 , N is eli m inated and a gain

changer is used in its place. Another crucial diff erence is

the point at which A of Asj~~~0t is measured . In the

SOALJ , it is measured at the point where it has the greatest

immnunity to force d signal components , because the design

guarantees that at x in Figs. 1, 14 the forced components

are slow and small realtive to and A . Peak to peak

detection becomes possible which further increases the

immunity. In the others [18-22] , A is measured closer

-

~

-

~

- -
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to the plant input or output , where the forced components 
V

are much stronger. A bandpass filter becomes necessary with

its additional significant time lbg over and above that

needed to measure A . Disturbance components can conceivably

be misinterpreted as plant gain changes with possibly disastrous

results. If the pass-band of the filter is narrowed to

decrease the latter possibility , the greater is the danger

if wanders out of the pass-band and the greater is the

time lag of the f i l ter .

General Plant Uncertainty . 
V

In the above , only uncertainty in the plant gain factor

K of P = KPh was considered , in order to emphasize the

fundamental SOAS and SOAL properties. In the general

uncertainty case Lf has adaptive obligations , which it

does not have for K variations only and no disturbances.

These obligations in a quantitative design can be put in the

form of bounds on Lf(i~~
) , just like those in Fig. 3 for

the disturbance attenuation obligations of Lf .
‘

Reference [25] has treated in detail the general

uncertainty problem for the SOAS and it Was found that

some iteration may be theoretically necessary , but rarely

in practice because is re la t ively  so large that

ILf (iw) I is significant over a relatively large w range .

The t reatment  for  the SOAL is precisely the same and there- 
V

fore need not be repeated here . However , in the design 

~~- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~ 
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execution , the iteration is inuch more likely to be necessary ,

especially in the case of large uncartainty in planì t dynam i c-s .

The reason is that w is much smaller in the SOAI, than in

the SOAS , so one does not have so much extra Lf bandwidth .

The bounds on Lf(5w ) due to the uncertainty in 
~h 

may

be such that needed (at which Lf = —0.5) for this

purpose , is larger than mm obtained from coiistraii .ts

(13 , 114). It is obviously easy to manufacture such problem

specifications. In any case, the procedure is identical to

that presented [25] for the SOAS .

IV. NONLINEAR SECONDARY LOOP SOANL

The logical next step for improving the adaptive system

is to try to eliminate the sensitivity of the SOAL secondary

loop L5 to the plant gain K . This can be done , in the

steady—state , by means of a multiplier in the secondary loop

whose multiplication factor is inversely proportional to K

Since K is not directly available , B which is inversely

related to K is used , as shown in Fig. 7, which shows only

the secondary loop , as the primary loop is identical to that

in Figs. 1, 1-la. The ‘fundamental feedback equation ’ is

again used to find the dynamics of the new L5 . As Lh e loop

is non linear , such a linear time invariant description ,

valid only for small pe r tu rba t ions  about an ope ra t ing  po in t ,

is a function of the operating point . The easiest one is

when the secondary loop is initially quiescent i.e.

Ar Am so there is no inultip Uer output. 
V
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Let and be as shown in Fig. 7. Let be

A K  , a change in the plant gain , and C =  . Make

cuts at a , a’ . Then t V  . 0 due to the cuts and t =1
V 

V 0]. Os V

To find t . = ~~
— , note that AA (recall similarcm AK m

calculation in the SOAL)

4B(AK) 
IG 2PhC1(jw o)I Ame l+1 f13~~

This is multiplied by _B/Bmjn , giving a result proportional

to B2 . To f in d t5~ , let a’ be an independent input

and find a/a’ . B becomes Bnew B + a 
g iving

V V ~~~~~ L/3

~1 APi p—- IG 2 PhG1(j w o ) l  K A 
~~Ti1J~73

which is mu ltiplied by —B /B . . For incremental a’new m m

the result is t — —,-

~~~ 

, and L5 
- - -

~~~ V
( 5 )t sc

is the SOANL secondary loop transmission. In the steady

state the above calculated AB/AK(s) gives AB/AK -B/K ,

just as in the SOAL . The important difference is that L
~

contains BK (cf K in (12) for the SOAL), whi ch is

invariant in the steady—state. Hence , the SOA!’IL should

deliver for all K E [Kmin ~ 
Kmax]~ 

the fast adjustment to 
V

K variations , which the SOAL1 can do only near Km~x

- ~~V
__ V~~~~~~~~~~~~~~~~~

V V —~~ ~~~.
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SOANL Design Example

The synthesis procedure , specifications etc are the

same as for the SOAL . Hence , the results for C1 , G2, B

etc are precisely the same. Simulation results are shown

in Fig. 8. The analysis made was for small K changes ,

and would be expected to be valid for large changes if these

were somewhat slower than the secondary loop dynamics.

Nevertheless , the same basisc results hold even for very

large and abrupt changes in the plant gain K , as seen in

Fig. 8.

a V. CONCLUSIONS

The development of a quantitative design theory for the

single loop self—oscillating adaptive system (SOAS) has lcd

in a natural , logical manner to the two-loop system (SOAL) with

important superior features. The emphasis on quantitative V

design reveals also the superiority of the SOAL over other

such two-loop structures. It is interesting that the gain
was -

factor uncertainty Kmax/Kmin which~ inherent1y banished as

an adaptive problem by the oscillation , returns in the

SOAS. in the quasilinearity constraints . It plays there an

important role in forcing an unnecessarily large 
~~ mm

It is banished in the SOAL~, permitting ~i much smaller w mm

but reappears in the secondary ]oop dynamics . Th is results

in the speed of a d j u s t m e n t  to K v ar i at i o ns  being a f u n c t i on

of K and much slower at K . than at K . It is
ruin HIVI X
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bani,shed from the SOAL. by means of non l inea r  comp ensat ion

in the secondary ioop , giving the SOAN I~. It

undoubtedly reappears in a subtle mariner in a nonlinear

analysis of the SOANL , but if so , it does not appear - to

be a critical one. Exactly the same two-loop extensions

can be made to the external ly  excited adapt ive  (EEAS)
EEAL and

system [26], giving multiple 1ooP
A
EEANL which therefore do not

require separate t rea tment .
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